Photo 1/1

Galerie
Photo 1/1

Vous en avez un à vendre ?
Loring W. Tu Géométrie différentielle (Arrière rigide) Textes diplômés en mathématiques
Another great item from Rarewaves USA | Free delivery!
93,26 USD
Environ79,75 EUR
État :
Neuf
Livre neuf, n'ayant jamais été lu ni utilisé, en parfait état, sans pages manquantes ni endommagées. Consulter l'annonce du vendeur pour avoir plus de détails.
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Livraison :
Gratuit Economy Shipping.
Lieu où se trouve l'objet : Oswego, Illinois, États-Unis
Délai de livraison :
Estimé entre le ven. 25 juil. et le jeu. 31 juil. à 94104
Retours :
Retour sous 30 jours. L'acheteur paie les frais de retour. Si vous utilisez un bordereau d'affranchissement eBay, son coût sera déduit du montant de votre remboursement.
Paiements :
Achetez en toute confiance
Le vendeur assume l'entière responsabilité de cette annonce.
Numéro de l'objet eBay :396656282012
Dernière mise à jour le 07 juil. 2025 19:30:59 CEST. Afficher toutes les modificationsAfficher toutes les modifications
Caractéristiques de l'objet
- État
- Book Title
- Differential Geometry
- Title
- Differential Geometry
- Subtitle
- Connections, Curvature, and Characteristic Classes
- EAN
- 9783319550824
- ISBN
- 9783319550824
- Edition
- 1st ed. 2017
- Genre
- Science Nature & Math
- Release Date
- 06/15/2017
- Release Year
- 2017
- Country/Region of Manufacture
- CH
- Item Height
- 235mm
À propos de ce produit
Product Identifiers
Publisher
Springer International Publishing A&G
ISBN-10
3319550829
ISBN-13
9783319550824
eBay Product ID (ePID)
237490081
Product Key Features
Number of Pages
Xvii, 347 Pages
Publication Name
Differential Geometry : Connections, Curvature, and Characteristic Classes
Language
English
Publication Year
2017
Subject
Geometry / Differential, Geometry / Algebraic
Type
Textbook
Subject Area
Mathematics
Series
Graduate Texts in Mathematics Ser.
Format
Hardcover
Dimensions
Item Weight
261.3 Oz
Item Length
9.3 in
Item Width
6.1 in
Additional Product Features
Reviews
"The textbook is a concise and well organized treatment of characteristic classes on principal bundles. It is characterized by a right balance between rigor and simplicity. It should be in every mathematician's arsenal and take its place in any mathematical library." (Nabil L. Youssef, zbMATH 1383.53001, 2018)
Dewey Edition
23
Series Volume Number
275
Number of Volumes
1 vol.
Illustrated
Yes
Dewey Decimal
516.36
Table Of Content
Preface.- Chapter 1. Curvature and Vector Fields.- 1. Riemannian Manifolds.- 2. Curves.- 3. Surfaces in Space.- 4. Directional Derivative in Euclidean Space.- 5. The Shape Operator.- 6. Affine Connections.- 7. Vector Bundles.- 8. Gauss's Theorema Egregium.- 9. Generalizations to Hypersurfaces in Rn+1.- Chapter 2. Curvature and Differential Forms.- 10. Connections on a Vector Bundle.- 11. Connection, Curvature, and Torsion Forms.- 12. The Theorema Egregium Using Forms.- Chapter 3. Geodesics.- 13. More on Affine Connections.- 14. Geodesics.- 15. Exponential Maps.- 16. Distance and Volume.- 17. The Gauss-Bonnet Theorem.- Chapter 4. Tools from Algebra and Topology.- 18. The Tensor Product and the Dual Module.- 19. The Exterior Power.- 20. Operations on Vector Bundles.- 21. Vector-Valued Forms.- Chapter 5. Vector Bundles and Characteristic Classes.- 22. Connections and Curvature Again.- 23. Characteristic Classes.- 24. Pontrjagin Classes.- 25. The Euler Class and Chern Classes.- 26. Some Applications of Characteristic Classes.- Chapter 6. Principal Bundles and Characteristic Classes.- 27. Principal Bundles.- 28. Connections on a Principal Bundle.- 29. Horizontal Distributions on a Frame Bundle.- 30. Curvature on a Principal Bundle.- 31. Covariant Derivative on a Principal Bundle.- 32. Character Classes of Principal Bundles.- A. Manifolds.- B. Invariant Polynomials.- Hints and Solutions to Selected End-of-Section Problems.- List of Notations.- References.- Index.
Synopsis
This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern-Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss-Bonnet theorem. Exercises throughout the book test the reader's understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds , and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.
LC Classification Number
QA641-670
Description de l'objet fournie par le vendeur
Informations sur le vendeur professionnel
À propos de ce vendeur
rarewaves-usa
98,2% d'évaluations positives•1,5 millions objets vendus
Inscrit comme vendeur professionnel
Évaluations du vendeur (527.317)
- a***l (26)- Évaluations laissées par l'acheteur.Dernier moisAchat vérifiéHappy with my purchase
- c***j (547)- Évaluations laissées par l'acheteur.Dernier moisAchat vérifiéFast service. Blu-ray brand new. Thanks!
- i***v (1144)- Évaluations laissées par l'acheteur.Dernier moisAchat vérifiéA+ Just what i ordered thx