Photo 1/1

Galerie
Photo 1/1

Vous en avez un à vendre ?
Théorie algébrique des nombres et dernier théorème de Fermat par Ian Stewart : Neuf
76,86 USD
Environ66,56 EUR
État :
Neuf
Livre neuf, n'ayant jamais été lu ni utilisé, en parfait état, sans pages manquantes ni endommagées. Consulter l'annonce du vendeur pour avoir plus de détails.
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Livraison :
Gratuit Standard Shipping.
Lieu où se trouve l'objet : Sparks, Nevada, États-Unis
Délai de livraison :
Estimé entre le sam. 2 août et le ven. 8 août à 94104
Retours :
Retour sous 30 jours. L'acheteur paie les frais de retour. Si vous utilisez un bordereau d'affranchissement eBay, son coût sera déduit du montant de votre remboursement.
Paiements :
Achetez en toute confiance
Le vendeur assume l'entière responsabilité de cette annonce.
Numéro de l'objet eBay :365317268422
Caractéristiques de l'objet
- État
- Book Title
- Algebraic Number Theory and Fermat's Last Theorem
- Publication Date
- 2024-12-24
- Edition Number
- 5
- Pages
- 486
- ISBN
- 9781032610931
À propos de ce produit
Product Identifiers
Publisher
CRC Press LLC
ISBN-10
103261093X
ISBN-13
9781032610931
eBay Product ID (ePID)
7070494404
Product Key Features
Number of Pages
486 Pages
Language
English
Publication Name
Algebraic Number Theory and Fermat's Last Theorem
Subject
General, Number Theory, Combinatorics
Publication Year
2024
Type
Textbook
Subject Area
Mathematics
Format
Trade Paperback
Dimensions
Item Length
9.2 in
Item Width
6.1 in
Additional Product Features
Edition Number
5
Intended Audience
College Audience
LCCN
2024-028878
Dewey Edition
23
Illustrated
Yes
Dewey Decimal
512.74
Table Of Content
I. Algebraic Methods. 1. Algebraic Background. 2. Algebraic Numbers. 3. Quadratic and Cyclotomic Fields. 4. Pell's Equation. 5. Factorisation into Irreducibles. 6. Ideals. II. Geometric Methods. 7. Lattices. 8. Minkowski's Theorem. 9. Geometric Representation of Algebraic Numbers. 10. Dirichlet's Units Theorem. 11. Class-Group and Class-Number. III. Number-Theoretic Applications. 12. Computational Methods. 13. Kummer's Special Case of Fermat's Last Theorem. IV. Elliptic Curves and Elliptic Functions. 14. Elliptic Curves. 15. Elliptic Functions. V. Wiles's Proof of Fermat's Last Theorem. 16. The Path to the Final Breakthrough. 17. Wiles's Strategy and Subsequent Developments. VI. Galois Theory and Other Topics. 18. Extensions and Galois Theory. 19. Cyclotomic and Cubic Fields. 20. Prime Ideals Revisited. 21. Ramification Theory. 22. Quadratic Reciprocity. 23. Valuations and p-adic Numbers.
Synopsis
Updated to reflect current research and extended to cover more advanced topics as well as the basics, this book introduces fundamental ideas of algebraic numbers and explores one of the most intriguing stories in the history of mathematics--the quest for a proof of Fermat's Last Theorem., Updated to reflect current research and extended to cover more advanced topics as well as the basics, Algebraic Number Theory and Fermat's Last Theorem, Fifth Edition introduces fundamental ideas of algebraic numbers and explores one of the most intriguing stories in the history of mathematics--the quest for a proof of Fermat's Last Theorem. The authors use this celebrated theorem to motivate a general study of the theory of algebraic numbers, initially from a relatively concrete point of view. Students will see how Wiles's proof of Fermat's Last Theorem opened many new areas for future work. New to the Fifth Edition Pell's Equation x^2-dy^2=1: all solutions can be obtained from a single 'fundamental' solution, which can be found using continued fractions. Galois theory of number field extensions, relating the field structure to that of the group of automorphisms. More material on cyclotomic fields, and some results on cubic fields. Advanced properties of prime ideals, including the valuation of a fractional ideal relative to a prime ideal, localisation at a prime ideal, and discrete valuation rings. Ramification theory, which discusses how a prime ideal factorises when the number field is extended to a larger one. A short proof of the Quadratic Reciprocity Law based on properties of cyclotomic fields. This Valuations and p -adic numbers. Topology of the p -adic integers. Written by preeminent mathematicians Ian Stewart and David Tall, this text continues to teach students how to extend properties of natural numbers to more general number structures, including algebraic number fields and their rings of algebraic integers. It also explains how basic notions from the theory of algebraic numbers can be used to solve problems in number theory.
LC Classification Number
QA247.S76 2025
Description de l'objet fournie par le vendeur
Informations sur le vendeur professionnel
À propos de ce vendeur
AlibrisBooks
98,6% d'évaluations positives•1,9 millions objets vendus
Inscrit comme vendeur professionnel
Évaluations du vendeur (513.299)
- n***t (9138)- Évaluations laissées par l'acheteur.Dernier moisAchat vérifiéThanks! A++ transaction.
- n***a (132)- Évaluations laissées par l'acheteur.Dernier moisAchat vérifiéBetter than described. A Good looking book for the money.
- 7***t (4439)- Évaluations laissées par l'acheteur.Dernier moisAchat vérifiéGreat product