Le vendeur a mis fin à cette annonce le jeu. 3 juil. à 14:15, car l'objet n'est plus disponible.
DEEP LEARNING FOR COMPUTER ARCHITECTS (SYNTHESIS LECTURES By Paul Whatmough
Terminé
DEEP LEARNING FOR COMPUTER ARCHITECTS (SYNTHESIS LECTURES By Paul Whatmough
75,95 USD75,95 USD
jeu. 03 juil., 14:15jeu. 03 juil., 14:15
Vous en avez un à vendre ?

DEEP LEARNING FOR COMPUTER ARCHITECTS (SYNTHESIS LECTURES By Paul Whatmough

~ Quick Free Delivery in 2-14 days. 100% Satisfaction ~
ZUBER
(267612)
Inscrit comme vendeur professionnel
75,95 USD
Environ65,54 EUR
État :
Bon état
Book is in typical used-Good Condition.  Will show signs of wear to cover and/or pages. There may be ... En savoir plusà propos de l'état
    Livraison :
    Gratuit Economy Shipping.
    Lieu où se trouve l'objet : US, États-Unis
    Délai de livraison :
    Estimé entre le jeu. 31 juil. et le lun. 4 août
    Les délais de livraison sont estimés au moyen de notre méthode exclusive basée sur la distance entre l'acheteur et le lieu où se trouve l'objet, le service de livraison sélectionné, l'historique des livraisons du vendeur et d'autres facteurs. Les délais de livraison peuvent varier, notamment pendant les périodes de pointe.
    Retours :
    Retour sous 30 jours. Le vendeur paie les frais de retour.
    Paiements :
         Diners Club

    Achetez en toute confiance

    Garantie client eBay
    Obtenez un remboursement si vous ne recevez pas l'objet que vous avez commandé. En savoir plusGarantie client eBay - la page s'ouvre dans une nouvelle fenêtre ou un nouvel onglet
    Le vendeur assume l'entière responsabilité de cette annonce.
    Numéro de l'objet eBay :336018753630

    Caractéristiques de l'objet

    État
    Bon état
    Livre ayant déjà été lu, mais qui est toujours en bon état. La couverture présente des dommages mineurs, comme des éraflures, mais n'est ni trouée ni déchirée. Pour les couvertures rigides, la jaquette n'est pas nécessairement incluse. La reliure présente des marques d'usure mineures. La majorité des pages sont intactes. Pliures et déchirures mineures. Soulignement de texte mineur au crayon. Aucun surlignement de texte. Aucune note dans les marges. Aucune page manquante. Consulter l'annonce du vendeur pour avoir plus de détails et voir la description des défauts. Afficher toutes les définitions des étatsla page s'ouvre dans une nouvelle fenêtre ou un nouvel onglet
    Commentaires du vendeur
    “Book is in typical used-Good Condition.  Will show signs of wear to cover and/or pages. There may ...
    ISBN-10
    1627057285
    Book Title
    Deep Learning for Computer Architects (Synthesis Lectures on
    ISBN
    9781627057288

    À propos de ce produit

    Product Identifiers

    Publisher
    Morgan & Claypool Publishers
    ISBN-10
    1627057285
    ISBN-13
    9781627057288
    eBay Product ID (ePID)
    240299249

    Product Key Features

    Number of Pages
    123 Pages
    Language
    English
    Publication Name
    Deep Learning for Computer Architects
    Publication Year
    2017
    Subject
    Systems Architecture / General, Intelligence (Ai) & Semantics, Neural Networks
    Type
    Textbook
    Subject Area
    Computers
    Author
    Paul Whatmough, Brandon Reagen, Robert Adolf, David Brooks, Gu-Yeon Wei
    Series
    Synthesis Lectures on Computer Architecture Ser.
    Format
    Trade Paperback

    Dimensions

    Item Height
    0.3 in
    Item Weight
    8 Oz
    Item Length
    9.2 in
    Item Width
    7.5 in

    Additional Product Features

    Intended Audience
    Trade
    Illustrated
    Yes
    Table Of Content
    Preface Introduction Foundations of Deep Learning Methods and Models Neural Network Accelerator Optimization: A Case Study A Literature Survey and Review Conclusion Bibliography Authors' Biographies
    Synopsis
    This is a primer written for computer architects in the new and rapidly evolving field of deep learning. It reviews how machine learning has evolved since its inception in the 1960s and tracks the key developments leading up to the emergence of the powerful deep learning techniques that emerged in the last decade. Machine learning, and specifically deep learning, has been hugely disruptive in many fields of computer science. The success of deep learning techniques in solving notoriously difficult classification and regression problems has resulted in their rapid adoption in solving real-world problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fundamental advancements in training deeper models were enabled by the availability of massive datasets and high-performance computer hardware. It also reviews representative workloads, including the most commonly used datasets and seminal networks across a variety of domains. In addition to discussing the workloads themselves, it also details the most popular deep learning tools and show how aspiring practitioners can use the tools with the workloads to characterize and optimize DNNs. The remainder of the book is dedicated to the design and optimization of hardware and architectures for machine learning. As high-performance hardware was so instrumental in the success of machine learning becoming a practical solution, this chapter recounts a variety of optimizations proposed recently to further improve future designs. Finally, it presents a review of recent research published in the area as well as a taxonomy to help readers understand how various contributions fall in context., A primer for computer architects in a new and rapidly evolving field. The authors review how machine learning has evolved since its inception in the 1960s and track the key developments leading up to the emergence of the powerful deep learning techniques that have emerged in the last decade., This is a primer written for computer architects in the new and rapidly evolving field of deep learning . It reviews how machine learning has evolved since its inception in the 1960s and tracks the key developments leading up to the emergence of the powerful deep learning techniques that emerged in the last decade. Machine learning, and specifically deep learning, has been hugely disruptive in many fields of computer science. The success of deep learning techniques in solving notoriously difficult classification and regression problems has resulted in their rapid adoption in solving real-world problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fundamental advancements in training deeper models were enabled by the availability of massive datasets and high-performance computer hardware. It also reviews representative workloads, including the most commonly used datasets and seminal networks across a variety of domains. In addition to discussing the workloads themselves, it also details the most popular deep learning tools and show how aspiring practitioners can use the tools with the workloads to characterize and optimize DNNs. The remainder of the book is dedicated to the design and optimization of hardware and architectures for machine learning. As high-performance hardware was so instrumental in the success of machine learning becoming a practical solution, this chapter recounts a variety of optimizations proposed recently to further improve future designs. Finally, it presents a review of recent research published in the area as well as a taxonomy to help readers understand how various contributions fall in context.

    Description de l'objet fournie par le vendeur

    Informations sur le vendeur professionnel

    Je certifie que toutes mes activités de vente seront conformes à toutes les lois et réglementations de l'UE.
    À propos de ce vendeur

    ZUBER

    97,8% d'évaluations positives962 000 objets vendus

    Membre depuis oct. 1998
    Inscrit comme vendeur professionnel
    Visiter la BoutiqueContacter

    Évaluations détaillées du vendeur

    Moyenne pour les 12 derniers mois
    Description exacte
    4.8
    Frais de livraison raisonnables
    5.0
    Livraison rapide
    5.0
    Communication
    4.9

    Catégories populaires de cette Boutique

    Évaluations du vendeur (295.362)

    Toutes les évaluations
    Positives
    Neutres
    Négatives
      • e***l (804)- Évaluations laissées par l'acheteur.
        Dernier mois
        Achat vérifié
        Low cost, fast shipping, probably in good condition, A+ ebayer.
      Afficher toutes les évaluations