Cet objet est en rupture de stock.
Vous en avez un à vendre ?

Deep Learning par Goodfellow, Ian NEUF couverture rigide

dunkin_bookstore
(37082)
Inscrit comme vendeur professionnel
134,71 USD
Environ115,11 EUR
État :
Neuf
Livraison :
Gratuit USPS Media MailTM.
Lieu où se trouve l'objet : Wayne, NJ, États-Unis
Délai de livraison :
Estimé entre le jeu. 4 sept. et le lun. 15 sept. à 94104
Les dates de livraison estimées - la page s'ouvre dans une nouvelle fenêtre ou un nouvel onglet prennent en compte le délai d'expédition indiqué par le vendeur, le code postal de l'expéditeur, le code postal du destinataire et la date d'acceptation de l'offre. Elles dépendent du service de livraison sélectionné et de la date de réception du paiementréception du paiement - la page s'ouvre dans une nouvelle fenêtre ou un nouvel onglet. Les délais de livraison peuvent varier, notamment pendant les périodes de pointe.
Retours :
Retour sous 30 jours. L'acheteur paie les frais de retour. Si vous utilisez un bordereau d'affranchissement eBay, son coût sera déduit du montant de votre remboursement.
Paiements :
     Diners Club

Achetez en toute confiance

Vendeur Top Fiabilité
Garantie client eBay
Obtenez un remboursement si vous ne recevez pas l'objet que vous avez commandé. En savoir plusGarantie client eBay - la page s'ouvre dans une nouvelle fenêtre ou un nouvel onglet
Le vendeur assume l'entière responsabilité de cette annonce.
Numéro de l'objet eBay :235514964987
Dernière mise à jour le 14 août 2025 14:00:10 CEST. Afficher toutes les modificationsAfficher toutes les modifications

Caractéristiques de l'objet

État
Neuf: Livre neuf, n'ayant jamais été lu ni utilisé, en parfait état, sans pages manquantes ni ...
Book Title
Deep Learning
Genre
Modern & Contemporary
Original Language
English
Intended Audience
Young Adults
ISBN
9780262035613

À propos de ce produit

Product Identifiers

Publisher
MIT Press
ISBN-10
0262035618
ISBN-13
9780262035613
eBay Product ID (ePID)
228981524

Product Key Features

Number of Pages
800 Pages
Language
English
Publication Name
Deep Learning
Publication Year
2016
Subject
Intelligence (Ai) & Semantics, Computer Science
Type
Textbook
Subject Area
Computers
Author
Yoshua Bengio, Ian Goodfellow, Aaron Courville
Series
Adaptive Computation and Machine Learning Ser.
Format
Hardcover

Dimensions

Item Height
1.3 in
Item Weight
45.5 Oz
Item Length
9.3 in
Item Width
7.3 in

Additional Product Features

Intended Audience
Trade
LCCN
2016-022992
Reviews
[T]he AI bible... the text should be mandatory reading by all data scientists and machine learning practitioners to get a proper foothold in this rapidly growing area of next-gen technology., [T]he AI bible... the text should be mandatory reading by all data scientists and machine learning practitioners to get a proper foothold in this rapidly growing area of next-gen technology.-- Daniel D. Gutierrez , insideBIGDATA --
Dewey Edition
23
Illustrated
Yes
Dewey Decimal
006.3/1
Synopsis
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. "Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." -Elon Musk , cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors., An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. "Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." --Elon Musk , cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
LC Classification Number
Q325.5.G66 2017

Description de l'objet fournie par le vendeur

Informations sur le vendeur professionnel

À propos de ce vendeur

dunkin_bookstore

99,5% d'évaluations positives194 000 objets vendus

Membre depuis juin 2014
Répond en général sous 24 heures
Inscrit comme vendeur professionnel
📚 Dunkin Bookstore - Your Ultimate Book Destination! 📖🌟 Welcome to Dunkin Bookstore! 🌟Where every page turns into a new adventure!🔹 A Treasure Trove of BooksLooking for bestsellers, classics, or ...
Plus
Visiter la BoutiqueContacter

Évaluations détaillées du vendeur

Moyenne pour les 12 derniers mois
Description exacte
4.9
Frais de livraison raisonnables
5.0
Livraison rapide
5.0
Communication
4.9

Évaluations du vendeur (39.964)

Toutes les évaluations
Positives
Neutres
Négatives