Photo 1/1

Galerie
Photo 1/1

Vous en avez un à vendre ?
MATHÉMATIQUES DU BIG DATA : FEUILLES DE CALCUL, BASES DE DONNÉES, par Jeremy Kepner & NEUF
~ BRAND NEW!! Quick & Free Delivery in 2-14 days ~
36,95 USD
Environ32,40 EUR
État :
Neuf
Livre neuf, n'ayant jamais été lu ni utilisé, en parfait état, sans pages manquantes ni endommagées. Consulter l'annonce du vendeur pour avoir plus de détails.
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Livraison :
Gratuit Economy Shipping.
Lieu où se trouve l'objet : US, États-Unis
Délai de livraison :
Estimé entre le lun. 4 août et le jeu. 7 août à 94104
Retours :
Retour sous 30 jours. Le vendeur paie les frais de retour.
Paiements :
Achetez en toute confiance
Le vendeur assume l'entière responsabilité de cette annonce.
Numéro de l'objet eBay :226740302017
Dernière mise à jour le 27 juil. 2025 23:01:14 CEST. Afficher toutes les modificationsAfficher toutes les modifications
Caractéristiques de l'objet
- État
- ISBN-10
- 0262038390
- Book Title
- Mathematics of Big Data: Spreadsheets, Databases, Matrices, and
- ISBN
- 9780262038393
À propos de ce produit
Product Identifiers
Publisher
MIT Press
ISBN-10
0262038390
ISBN-13
9780262038393
eBay Product ID (ePID)
243128698
Product Key Features
Number of Pages
448 Pages
Publication Name
Mathematics of Big Data : Spreadsheets, Databases, Matrices, and Graphs
Language
English
Publication Year
2018
Subject
Computer Science, General, Databases / Data Mining
Type
Textbook
Subject Area
Mathematics, Computers
Series
Mit Lincoln Laboratory Ser.
Format
Hardcover
Dimensions
Item Height
1.2 in
Item Weight
35.3 Oz
Item Length
9.4 in
Item Width
7.3 in
Additional Product Features
Intended Audience
Trade
LCCN
2017-057054
Illustrated
Yes
Synopsis
The first book to present the common mathematical foundations of big data analysis across a range of applications and technologies. Today, the volume, velocity, and variety of data are increasing rapidly across a range of fields, including Internet search, healthcare, finance, social media, wireless devices, and cybersecurity. Indeed, these data are growing at a rate beyond our capacity to analyze them. The tools--including spreadsheets, databases, matrices, and graphs--developed to address this challenge all reflect the need to store and operate on data as whole sets rather than as individual elements. This book presents the common mathematical foundations of these data sets that apply across many applications and technologies. Associative arrays unify and simplify data, allowing readers to look past the differences among the various tools and leverage their mathematical similarities in order to solve the hardest big data challenges. The book first introduces the concept of the associative array in practical terms, presents the associative array manipulation system D4M (Dynamic Distributed Dimensional Data Model), and describes the application of associative arrays to graph analysis and machine learning. It provides a mathematically rigorous definition of associative arrays and describes the properties of associative arrays that arise from this definition. Finally, the book shows how concepts of linearity can be extended to encompass associative arrays. Mathematics of Big Data can be used as a textbook or reference by engineers, scientists, mathematicians, computer scientists, and software engineers who analyze big data., The first book to present the common mathematical foundations of big data analysis across a range of applications and technologies. Today, the volume, velocity, and variety of data are increasing rapidly across a range of fields, including Internet search, healthcare, finance, social media, wireless devices, and cybersecurity. Indeed, these data are growing at a rate beyond our capacity to analyze them. The tools-including spreadsheets, databases, matrices, and graphs-developed to address this challenge all reflect the need to store and operate on data as whole sets rather than as individual elements. This book presents the common mathematical foundations of these data sets that apply across many applications and technologies. Associative arrays unify and simplify data, allowing readers to look past the differences among the various tools and leverage their mathematical similarities in order to solve the hardest big data challenges. The book first introduces the concept of the associative array in practical terms, presents the associative array manipulation system D4M (Dynamic Distributed Dimensional Data Model), and describes the application of associative arrays to graph analysis and machine learning. It provides a mathematically rigorous definition of associative arrays and describes the properties of associative arrays that arise from this definition. Finally, the book shows how concepts of linearity can be extended to encompass associative arrays. Mathematics of Big Data can be used as a textbook or reference by engineers, scientists, mathematicians, computer scientists, and software engineers who analyze big data.
LC Classification Number
QA76.9.B45K47 2018
Description de l'objet fournie par le vendeur
Informations sur le vendeur professionnel
À propos de ce vendeur
ZUBER
97,8% d'évaluations positives•963 000 objets vendus
Inscrit comme vendeur professionnel
Catégories populaires de cette Boutique
Évaluations du vendeur (295.558)
- a***b (476)- Évaluations laissées par l'acheteur.Dernier moisAchat vérifiéItem as described, thank you!
- i***z (827)- Évaluations laissées par l'acheteur.Dernier moisAchat vérifiéGreat seller, great communication and the item arrived fast and was as described. Thank you for a pleasant transaction.
- i***e (34)- Évaluations laissées par l'acheteur.Dernier moisAchat vérifiéExtraordinary smoothly transaction, the best ebayer I ‘ve ever met !