Vous en avez un à vendre ?

Principes fondamentaux de l'apprentissage automatique pour l'analyse prédictive des données : algorithmes, travail

nerdssavetheworld
(202)
Inscrit comme vendeur professionnel
14,96 USD
Environ13,12 EUR
ou Offre directe
État :
Etat correct
Pas d'inquiétude ! Les retours sont acceptés.
Livraison :
6,72 USD (environ 5,89 EUR) USPS Media MailTM.
Lieu où se trouve l'objet : Dublin, California, États-Unis
Délai de livraison :
Estimé entre le sam. 2 août et le mer. 6 août à 94104
Les délais de livraison sont estimés au moyen de notre méthode exclusive basée sur la distance entre l'acheteur et le lieu où se trouve l'objet, le service de livraison sélectionné, l'historique des livraisons du vendeur et d'autres facteurs. Les délais de livraison peuvent varier, notamment pendant les périodes de pointe.
Retours :
Retour sous 30 jours. L'acheteur paie les frais de retour. Si vous utilisez un bordereau d'affranchissement eBay, son coût sera déduit du montant de votre remboursement.
Paiements :
     Diners Club

Achetez en toute confiance

Garantie client eBay
Obtenez un remboursement si vous ne recevez pas l'objet que vous avez commandé. En savoir plusGarantie client eBay - la page s'ouvre dans une nouvelle fenêtre ou un nouvel onglet
Le vendeur assume l'entière responsabilité de cette annonce.
Numéro de l'objet eBay :205600844551
Dernière mise à jour le 06 juil. 2025 22:59:38 CEST. Afficher toutes les modificationsAfficher toutes les modifications

Caractéristiques de l'objet

État
Etat correct: Livre présentant des marques d'usure apparentes. La couverture peut être légèrement ...
Book Title
Fundamentals of Machine Learning for Predictive Data Analytics: A
Narrative Type
Nonfiction
Genre
Specialty Boutique
Topic
Internet & Social Media
Intended Audience
Adult
Inscribed
NO
ISBN
9780262029445

À propos de ce produit

Product Identifiers

Publisher
MIT Press
ISBN-10
0262029448
ISBN-13
9780262029445
eBay Product ID (ePID)
208620163

Product Key Features

Number of Pages
624 Pages
Publication Name
Fundamentals of Machine Learning for Predictive Data Analytics : Algorithms, Worked Examples, and Case Studies
Language
English
Subject
Probability & Statistics / Stochastic Processes, Intelligence (Ai) & Semantics, Databases / Data Mining
Publication Year
2015
Type
Textbook
Subject Area
Mathematics, Computers
Author
Aoife D'arcy, Brian Mac Namee, John D. Kelleher
Format
Hardcover

Dimensions

Item Height
1.1 in
Item Weight
36.5 Oz
Item Length
9.2 in
Item Width
7.3 in

Additional Product Features

Intended Audience
Trade
LCCN
2014-046123
Dewey Edition
23
Illustrated
Yes
Dewey Decimal
006.3/1
Synopsis
A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals., A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning- information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.
LC Classification Number
Q325.5.K455 2015

Description de l'objet fournie par le vendeur

Informations sur le vendeur professionnel

Je certifie que toutes mes activités de vente seront conformes à toutes les lois et réglementations de l'UE.
À propos de ce vendeur

nerdssavetheworld

100% d'évaluations positives350 objets vendus

Membre depuis oct. 1999
Répond en général sous 24 heures
Inscrit comme vendeur professionnel
Autres objets du vendeurContacter

Évaluations détaillées du vendeur

Moyenne pour les 12 derniers mois
Description exacte
5.0
Frais de livraison raisonnables
5.0
Livraison rapide
5.0
Communication
4.9

Évaluations du vendeur (128)

Toutes les évaluations
Positives
Neutres
Négatives