Photo 1/6






Galerie
Photo 1/6






Vous en avez un à vendre ?
Principes fondamentaux de l'apprentissag e automatique pour l'analyse prédictive des données : algorithmes, travail
14,96 USD
Environ13,12 EUR
ou Offre directe
État :
Etat correct
Livre présentant des marques d'usure apparentes. La couverture peut être légèrement endommagée, mais son intégrité est intacte. La reliure peut être légèrement endommagée, mais son intégrité est intacte. Existence possible de notes dans les marges, de soulignement et de surlignement de texte. Aucune page manquante, ni aucun autre défaut susceptible de compromette la lisibilité ou la compréhension du texte. Consulter l'annonce du vendeur pour avoir plus de détails et voir la description des défauts.
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Livraison :
6,72 USD (environ 5,89 EUR) USPS Media MailTM.
Lieu où se trouve l'objet : Dublin, California, États-Unis
Délai de livraison :
Estimé entre le sam. 2 août et le mer. 6 août à 94104
Retours :
Retour sous 30 jours. L'acheteur paie les frais de retour. Si vous utilisez un bordereau d'affranchissement eBay, son coût sera déduit du montant de votre remboursement.
Paiements :
Achetez en toute confiance
Le vendeur assume l'entière responsabilité de cette annonce.
Numéro de l'objet eBay :205600844551
Dernière mise à jour le 06 juil. 2025 22:59:38 CEST. Afficher toutes les modificationsAfficher toutes les modifications
Caractéristiques de l'objet
- État
- Book Title
- Fundamentals of Machine Learning for Predictive Data Analytics: A
- Narrative Type
- Nonfiction
- Genre
- Specialty Boutique
- Topic
- Internet & Social Media
- Intended Audience
- Adult
- Inscribed
- NO
- ISBN
- 9780262029445
À propos de ce produit
Product Identifiers
Publisher
MIT Press
ISBN-10
0262029448
ISBN-13
9780262029445
eBay Product ID (ePID)
208620163
Product Key Features
Number of Pages
624 Pages
Publication Name
Fundamentals of Machine Learning for Predictive Data Analytics : Algorithms, Worked Examples, and Case Studies
Language
English
Subject
Probability & Statistics / Stochastic Processes, Intelligence (Ai) & Semantics, Databases / Data Mining
Publication Year
2015
Type
Textbook
Subject Area
Mathematics, Computers
Format
Hardcover
Dimensions
Item Height
1.1 in
Item Weight
36.5 Oz
Item Length
9.2 in
Item Width
7.3 in
Additional Product Features
Intended Audience
Trade
LCCN
2014-046123
Dewey Edition
23
Illustrated
Yes
Dewey Decimal
006.3/1
Synopsis
A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals., A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning- information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.
LC Classification Number
Q325.5.K455 2015
Description de l'objet fournie par le vendeur
Informations sur le vendeur professionnel
À propos de ce vendeur
nerdssavetheworld
100% d'évaluations positives•350 objets vendus
Inscrit comme vendeur professionnel
Évaluations du vendeur (128)
- s***g (22)- Évaluations laissées par l'acheteur.Dernier moisAchat vérifiéPerfect condition. Very happy with my purchase. Will order again.
- r***e (137)- Évaluations laissées par l'acheteur.Dernier moisAchat vérifiéFast shipping. Great protective packaging. Came as described (perfect). Would definitely buy again from this seller!
- 0***e (2652)- Évaluations laissées par l'acheteur.6 derniers moisAchat vérifiéThank you!