Objet vendu le mar. 5 août à 0:52.
Algebraic Topology Paperback C. R. F. Maunder
Vendu
Algebraic Topology Paperback C. R. F. Maunder
5,01 USD5,01 USD
mer. 06 août, 00:52mer. 06 août, 00:52
Vous en avez un à vendre ?

Algebraic Topology Paperback C. R. F. Maunder

vkjones_bedford
(363)
Inscrit comme vendeur particulier
En conséquence, les droits des consommateurs découlant de la législation européenne ne s'appliquent pas. La Garantie client eBay continue de s'appliquer pour la plupart des achats.
5,01 USD
Environ4,30 EUR
Se termine dans
État :
Très bon état
There is no writing or highlighting on the pages. The cover has not obvious damage, just has a ... En savoir plusà propos de l'état
Terminé : 06 août 2025 00:52:06 CEST
    Livraison :
    4,47 USD (environ 3,83 EUR) USPS Media MailTM.
    Lieu où se trouve l'objet : Bedford, Indiana, États-Unis
    Délai de livraison :
    Estimé entre le ven. 22 août et le mar. 26 août à 94104
    Les délais de livraison sont estimés au moyen de notre méthode exclusive basée sur la distance entre l'acheteur et le lieu où se trouve l'objet, le service de livraison sélectionné, l'historique des livraisons du vendeur et d'autres facteurs. Les délais de livraison peuvent varier, notamment pendant les périodes de pointe.
    Retours :
    Retour sous 30 jours. L'acheteur paie les frais de retour. Si vous utilisez un bordereau d'affranchissement eBay, son coût sera déduit du montant de votre remboursement.
    Paiements :
         Diners Club

    Achetez en toute confiance

    Garantie client eBay
    Obtenez un remboursement si vous ne recevez pas l'objet que vous avez commandé. En savoir plusGarantie client eBay - la page s'ouvre dans une nouvelle fenêtre ou un nouvel onglet
    Le vendeur assume l'entière responsabilité de cette annonce.
    Numéro de l'objet eBay :197574035999

    Caractéristiques de l'objet

    État
    Très bon état
    Livre qui ne semble pas neuf, ayant déjà été lu, mais qui est toujours en excellent état. La couverture ne présente aucun dommage apparent. Pour les couvertures rigides, la jaquette (si applicable) est incluse. Aucune page n'est manquante, endommagée, pliée ni déchirée. Aucun texte n'est souligné ni surligné. Aucune note ne figure dans les marges. La couverture intérieure peut présenter des marques d'identification mineures. Marques d'usure et déchirures mineures. Consulter l'annonce du vendeur pour avoir plus de détails et voir la description des défauts. Afficher toutes les définitions des étatsla page s'ouvre dans une nouvelle fenêtre ou un nouvel onglet
    Commentaires du vendeur
    “There is no writing or highlighting on the pages. The cover has not obvious damage, just has a ...
    Book Title
    Algebraic Topology Paperback C. R. F. Maunder
    Personalized
    No
    Educational Level
    Adult & Further Education
    Country/Region of Manufacture
    United States
    ISBN
    9780486691312

    À propos de ce produit

    Product Identifiers

    Publisher
    Dover Publications, Incorporated
    ISBN-10
    0486691314
    ISBN-13
    9780486691312
    eBay Product ID (ePID)
    782503

    Product Key Features

    Number of Pages
    400 Pages
    Language
    English
    Publication Name
    Algebraic Topology
    Publication Year
    1996
    Subject
    Topology
    Type
    Textbook
    Subject Area
    Mathematics
    Author
    C. R. F. Maunder
    Series
    Dover Books on Mathematics Ser.
    Format
    Trade Paperback

    Dimensions

    Item Height
    0.7 in
    Item Weight
    15.2 Oz
    Item Length
    8.4 in
    Item Width
    5.4 in

    Additional Product Features

    Intended Audience
    College Audience
    LCCN
    95-051359
    Dewey Edition
    20
    Illustrated
    Yes
    Dewey Decimal
    514/.2
    Table Of Content
    CHAPTER 1 ALGEBRAIC AND TOPOLOGICAL PRELIMINARIES 1.1 Introduction 1.2 Set theory 1.3 Algebra 1.4 Analytic Topology CHAPTER 2 HOMOTOPY AND SIMPLICIAL COMPLEXES 2.1 Introduction 2.2 The classification problem; homotopy 2.3 Simplicial complexes 2.4 Homotopy and homeomorphism of polyhedra 2.5 Subdivision and the Simplicial Approximation Theorem Exercises Notes on Chapter 2 CHAPTER 3 THE FUNDAMENTAL GROUP 3.1 Introduction 3.2 Definition and elementary properties of the fundamental group 3.3 Methods of calculation 3.4 Classification of triangulable 2-manifolds Exercises Notes on Chapter 3 CHAPTER 4 HOMOLOGY THEORY 4.1 Introduction 4.2 Homology groups 4.3 Methods of calculation: simplicial homology 4.4 Methods of calculation: exact sequences 4.5 "Homology groups with arbitrary coefficients, and the Lefschetz Fixed-Point Theorem" Exercises Notes on Chapter 4 CHAPTER 5 COHOMOLOGY AND DUALITY THEOREMS 5.1 Introduction 5.2 Definitions and calculation theorems 5.3 The Alexander-Poincaré Duality Theorem 5.4 Manifolds with boundary and the Lefschetz Duality Theorem Exercises Notes on Chapter 5 CHAPTER 6 GENERAL HOMOTOPY THEORY 6.1 Introduction 6.2 Some geometric constructions 6.3 Homotopy classes of maps 6.4 Exact sequences 6.5 Fibre and cofibre maps Exercises Notes on Chapter 6 CHAPTER 7 HOMOTOPY GROUPS AND CW-COMPLEXES 7.1 Introduction 7.2 Homotopy groups 7.3 CW-complexes 7.4 Homotopy groups of CW-complexes 7.5 The theorem of J. H. C. Whitehead and the Cellular Approximation Theorem Exercises Notes on Chapter 7 CHAPTER 8 HOMOLOGY AND COHOMOLOGY OF CW-COMPLEXES 8.1 Introduction 8.2 The Excision Theorem and cellular homology 8.3 The Hurewicz theorem 8.4 Cohomology and Eilenberg-MacLane spaces 8.5 Products Exercises Notes on Chapter 8 References Index
    Edition Description
    Reprint,New Edition
    Synopsis
    Based on lectures to advanced undergraduate and first-year graduate students, this is a thorough, sophisticated and modern treatment of elementary algebraic topology, essentially from a homotopy theoretic viewpoint. The presentation of the homotopy theory and the account of duality in homology manifolds make the text ideal for a course on either homotopy or homology theory.The idea of algebraic topology is to translate problems in topology into problems in algebra with the hope that they have a better chance of solution. The translation process is usually carried out by means of the homology or homotopy groups of a topological space. Much of the book is therefore concerned with the construction of these algebraic invariants, and with applications to topological problems, such as the classification of surfaces and duality theorems for manifolds. Other important topics covered are homotopy theory, CW-complexes and the co-homology groups associated with a general Ω-spectrum.Dr. Maunder has provided many examples and exercises as an aid, and the notes and references at the end of each chapter trace the historical development of the subject and also point the way to more advanced results."Throughout the text the style of writing is first class. The author has given much attention to detail, yet ensures that the reader knows where he is going. An excellent book." -- Bulletin of the Institute of Mathematics and Its Applications., Thorough, modern treatment, essentially from a homotopy theoretic viewpoint. Topics include homotopy and simplicial complexes, the fundamental group, homology theory, homotopy theory, homotopy groups and CW-Complexes, and other topics. Each chapter contains exercises and suggestions for further reading. 1980 corrected edition., Based on lectures to advanced undergraduate and first-year graduate students, this is a thorough, sophisticated and modern treatment of elementary algebraic topology, essentially from a homotopy theoretic viewpoint. The presentation of the homotopy theory and the account of duality in homology manifolds make the text ideal for a course on either homotopy or homology theory. The idea of algebraic topology is to translate problems in topology into problems in algebra with the hope that they have a better chance of solution. The translation process is usually carried out by means of the homology or homotopy groups of a topological space. Much of the book is therefore concerned with the construction of these algebraic invariants, and with applications to topological problems, such as the classification of surfaces and duality theorems for manifolds. Other important topics covered are homotopy theory, CW-complexes and the co-homology groups associated with a general -spectrum. Dr. Maunder has provided many examples and exercises as an aid, and the notes and references at the end of each chapter trace the historical development of the subject and also point the way to more advanced results. "Throughout the text the style of writing is first class. The author has given much attention to detail, yet ensures that the reader knows where he is going. An excellent book." -- Bulletin of the Institute of Mathematics and Its Applications., Based on lectures to advanced undergraduate and first-year graduate students, this is a thorough, sophisticated and modern treatment of elementary algebraic topology, essentially from a homotopy theoretic viewpoint. The presentation of the homotopy theory and the account of duality in homology manifolds make the text ideal for a course on either homotopy or homology theory.The idea of algebraic topology is to translate problems in topology into problems in algebra with the hope that they have a better chance of solution. The translation process is usually carried out by means of the homology or homotopy groups of a topological space. Much of the book is therefore concerned with the construction of these algebraic invariants, and with applications to topological problems, such as the classification of surfaces and duality theorems for manifolds. Other important topics covered are homotopy theory, CW-complexes and the co-homology groups associated with a general -spectrum.Dr. Maunder has provided many examples and exercises as an aid, and the notes and references at the end of each chapter trace the historical development of the subject and also point the way to more advanced results."Throughout the text the style of writing is first class. The author has given much attention to detail, yet ensures that the reader knows where he is going. An excellent book." -- Bulletin of the Institute of Mathematics and Its Applications., Thorough, modern treatment, essentially from a homotopy theoretic viewpoint. Topics include homotopy and simplicial complexes, the fundamental group, homology theory, homotopy theory, homotopy groups and CW-Complexes, and other topics. Includes exercises. Bibliography. 1980 corrected edition.
    LC Classification Number
    QA612.M38

    Description de l'objet fournie par le vendeur

    À propos de ce vendeur

    vkjones_bedford

    100% d'évaluations positives268 objets vendus

    Membre depuis juin 2000
    Inscrit comme vendeur particulierEn conséquence, les droits des consommateurs découlant de la législation européenne ne s'appliquent pas. La Garantie client eBay continue de s'appliquer pour la plupart des achats.
    Autres objets du vendeurContacter

    Évaluations du vendeur (127)

    Toutes les évaluations
    Positives
    Neutres
    Négatives