Photo 1/1

Galerie
Photo 1/1

Vous en avez un à vendre ?
Vision par ordinateur - Accv 2020 : 15ème conférence asiatique sur la vision par ordinateur, Kyot...
9,99 USD
Environ8,59 EUR
État :
Neuf
Livre neuf, n'ayant jamais été lu ni utilisé, en parfait état, sans pages manquantes ni endommagées. Consulter l'annonce du vendeur pour avoir plus de détails.
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Livraison :
Gratuit USPS First Class®.
Lieu où se trouve l'objet : Turlock, California, États-Unis
Délai de livraison :
Estimé entre le mer. 23 juil. et le ven. 25 juil. à 94104
Retours :
Retours refusés.
Paiements :
Achetez en toute confiance
Le vendeur assume l'entière responsabilité de cette annonce.
Numéro de l'objet eBay :115804965454
Dernière mise à jour le 20 nov. 2024 18:55:25 CET. Afficher toutes les modificationsAfficher toutes les modifications
Caractéristiques de l'objet
- État
- Book Title
- Computer Vision - Accv 2020: 15Th Asian Conference On Comput...
- ISBN
- 9783030695378
À propos de ce produit
Product Identifiers
Publisher
Springer International Publishing A&G
ISBN-10
3030695379
ISBN-13
9783030695378
eBay Product ID (ePID)
13050397394
Product Key Features
Number of Pages
Xviii, 715 Pages
Publication Name
Computer Vision - ACCV 2020 : 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 - December 4, 2020, Revised Selected Papers, Part IV
Language
English
Subject
Hardware / General, Intelligence (Ai) & Semantics, Computer Vision & Pattern Recognition
Publication Year
2021
Type
Textbook
Subject Area
Computers
Series
Lecture Notes in Computer Science Ser.
Format
Trade Paperback
Dimensions
Item Weight
39.2 Oz
Item Length
9.3 in
Item Width
6.1 in
Additional Product Features
Series Volume Number
12625
Number of Volumes
1 vol.
Illustrated
Yes
Table Of Content
Deep Learning for Computer Vision.- In-sample Contrastive Learning and Consistent Attention for Weakly Supervised Object Localization.- Exploiting Transferable Knowledge for Fairness-aware Image Classification.- Introspective Learning by Distilling Knowledge from Online Self-explanation.- Hyperparameter-Free Out-of-Distribution Detection Using Cosine Similarity.- Meta-Learning with Context-Agnostic Initialisations.- Second Order enhanced Multi-glimpse Attention in Visual Question Answering.- Localize to Classify and Classify to Localize: Mutual Guidance in Object Detection.- Unified Density-Aware Image Dehazing and Object Detection in Real-World Hazy Scenes.- Part-aware Attention Network for Person Re-Identification.- Image Captioning through Image Transformer.- Feature Variance Ratio-Guided Channel Pruning for Deep Convolutional Network Acceleration.- Learn more, forget less: Cues from human brain.- Knowledge Transfer Graph for Deep Collaborative Learning.- Regularizing Meta-Learning via Gradient Dropout.- Vax-a-Net: Training-time Defence Against Adversarial Patch Attacks.- Towards Optimal Filter Pruning with Balanced Performance and Pruning Speed.- Contrastively Smoothed Class Alignment for Unsupervised Domain Adaptation.- Double Targeted Universal Adversarial Perturbations.- Adversarially Robust Deep Image Super-Resolution using Entropy Regularization.- Online Knowledge Distillation via Multi-branch Diversity Enhancement.- Rotation Equivariant Orientation Estimation for Omnidirectional Localization.- Contextual Semantic Interpretability.- Few-Shot Object Detection by Second-order Pooling.- Depth-Adapted CNN for RGB-D cameras.- Generative Models for Computer Vision.- Over-exposure Correction via Exposure and Scene Information Disentanglement.- Novel-View Human Action Synthesis.- Augmentation Network for Generalised Zero-Shot Learning.- Local Facial Makeup Transfer via Disentangled Representation.- OpenGAN: Open Set Generative Adversarial Networks.- CPTNet: Cascade Pose Transform Network for Single Image Talking Head Animation.- TinyGAN: Distilling BigGAN for Conditional Image Generation.- A cost-effective method for improving and re-purposing large, pre-trained GANs by fine-tuning their class-embeddings.- RF-GAN: A Light and Reconfigurable Network for Unpaired Image-to-Image Translation.- GAN-based Noise Model for Denoising Real Images.- Emotional Landscape Image Generation Using Generative Adversarial Networks.- Feedback Recurrent Autoencoder for Video Compression.- MatchGAN: A Self-Supervised Semi-Supervised Conditional Generative Adversarial Network.- DeepSEE: Deep Disentangled Semantic Explorative Extreme Super-Resolution.- dpVAEs: Fixing Sample Generation for Regularized VAEs.- MagGAN: High-Resolution Face Attribute Editing with Mask-Guided Generative Adversarial Network.- EvolGAN: Evolutionary Generative Adversarial Networks.- Sequential View Synthesis with Transformer.
Synopsis
The six volume set of LNCS 12622-12627 constitutes the proceedings of the 15th Asian Conference on Computer Vision, ACCV 2020, held in Kyoto, Japan, in November/ December 2020.* The total of 254 contributions was carefully reviewed and selected from 768 submissions during two rounds of reviewing and improvement. The papers focus on the following topics: Part I: 3D computer vision; segmentation and grouping Part II: low-level vision, image processing; motion and tracking Part III: recognition and detection; optimization, statistical methods, and learning; robot vision Part IV: deep learning for computer vision, generative models for computer vision Part V: face, pose, action, and gesture; video analysis and event recognition; biomedical image analysis Part VI: applications of computer vision; vision for X; datasets and performance analysis *The conference was held virtually.
LC Classification Number
TA1634
Description de l'objet fournie par le vendeur
À propos de ce vendeur
Sodapop Surprise
98,2% d'évaluations positives•8,8 000 objets vendus
Inscrit comme vendeur particulierEn conséquence, les droits des consommateurs découlant de la législation européenne ne s'appliquent pas. La Garantie client eBay continue de s'appliquer pour la plupart des achats.
Évaluations du vendeur (2.662)
- 3***8 (7)- Évaluations laissées par l'acheteur.Dernier moisAchat vérifiéThanks! I got the dress on time, I hope my granddaughter will like it.
- 5***a (201)- Évaluations laissées par l'acheteur.Dernier moisAchat vérifiéGot here in the nick of time
- a***a (7325)- Évaluations laissées par l'acheteur.Dernier moisAchat vérifiéGood purchase, as described and shipped quickly.